
2025/07/14 00:13 1/9

docuteam wiki - https://wiki.docuteam.ch/

docuteam bridge

documentation for client applications

Documentation for docuteam bridge v.1.0.0

goal

Client applications should be able to submit a deposition (data and metadata) to our ingest platform.
Depositions are picked up by docuteam feeder workflows, usually processing and storing the
information in a repository. After a successful ingest, feeder (and subsequently bridge) return PIDs for
every object (file, folder) within the deposition. Using these PIDs, clients are able to access (read and
change) the deposited objects.

In the Open Archival Information System (OAIS) terminology:

the bridge deposition API recieves Submission Information Package (SIP)
after preservation actions, the SIP are ingested into the repository by feeder and become
Archival Information Package (AIP)
the bridge access API enables client application to retrieve Dissemination Information Package
(DIP)

key points

Bridge is a set of rest APIs that respond in JSON (and binary data)
Bridge is agnostic to package format

Use the simple, bagit-based format docuteam dublin core 1.0 (see SIP docuteam dublin
core1.0)
Use Matterhorn METS (see specification)
Use other formats like e. g. eCH-0160 or SEDA.

https://en.wikipedia.org/wiki/Open_Archival_Information_System
https://wiki.docuteam.ch/doku.php?id=docuteam:sip_dc_public_documentation
https://wiki.docuteam.ch/doku.php?id=docuteam:sip_dc_public_documentation
https://wiki.docuteam.ch/lib/exe/fetch.php?media=oais:spezifikation_matterhorn-mets_20160830_wi.pdf

Last update: 2019/09/13 13:28 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1568374104

https://wiki.docuteam.ch/ Printed on 2025/07/14 00:13

Bridge is composed of 3 APIs:
depositions: deposition of new packages
access: read data successfully deposited in the repository
changes: update or purge repository objects

bridge APIs

For security reasons, bridge enforces HTTPS. Access is restricted via tokens that must be transmitted
with each request via using the “token” parameter (regardless the HTTP method: GET, POST, PUT,
PATCH, DELETE). Roles are associated to tokens and limit their scope of operation.

depositions
new depositions are temporarily stored by bridge. They are made available to feeder,
which in turn processes and stores them into the repository,
depositions are identified by bridge IDs, that are returned with the HTTP response to a
deposition creation request,
upon successful archiving in the repository,

the status of the deposition is set to „archived“
PIDs, which are the repository’s Persistent IDs are made available by bridge. PIDs
are required to access (read, modify, purge) repository objects.
Each digital object in the repository (folder, file) gets its own PID and relations
between the customer's application IDs and PIDs are explicit in the deposition
metadata
the SIP is deleted from bridge as the information is preserved by the repository

changes target (for update or purge) one single object in the repository identified by its PID.
They can be limited to:

metadata only (data is unchanged, only for updates)
data only (metadata is unchanged)
object (metadata+data are modified)

access
gives access to the full DIP corresponding to a deposited SIP,
or gives access to metadata, data or on-the-fly converted formats of specific repository
objects,
this API is a proxy to docuteam rservices (a component offering high level access to
Fedora objects, such as DIP and preview generation)

0 - authentication and roles

Bridge relies solely on tokens for authentication an authorization. Tokens are bound to institutions
and roles and restrict the API usage on that basis.

An authentication token must be at least 15 characters long.
Tokens are passed via the “token” HTTP parameter, for example when using GET, this results in
urls of the form:

http://server/access/sync_original/:pid?token=123456789012345

2025/07/14 00:13 3/9

docuteam wiki - https://wiki.docuteam.ch/

roles

There are 5 roles:

The 3 first roles are limited to the organization they are bound to:
read: is restricted to the access API
create: has the same authorizations as read, and can in addition list and create
depositions via the deposition API
manage: has the same authorizations as read, and can in addition update or purge
repository objects via the nodes API

The 2 last roles are not limited to any organization
admin: authentication and authorization management, i.e. token administration via the
API or the GUI
feeder: super user, can do anything except token administration, including depositions
status updates

recommendation

use only one token with read roles in applications that do not require to create nor update
depositions,
use only one token with create role in application that make use of the deposition API but not
the changes API,
use only one token with manage role in applications that make use the changes API.

1 - depositions API

deposition statuses

submitted: the deposition was received by bridge
queued: the deposition has been attributed to a queue in feeder
processing: the deposition has been downloaded by feeder, which is processing it (preservation
actions and storage in the repository)
archived: the deposition was successfully processed by feeder and archived into the repository.
Persistent identifiers allocated to the deposition's objects are available in bridge and the binary
object has been deleted from bridge.
error: something went wrong during the deposition's processing by feeder, see “message” fields
in response)
deleted: the deposition was deleted from bridge (not from the repository!)

The deposition status can be managed by the role “feeder”. Other non-reader roles may only delete
depositions (set the status to deleted), except when status is set to “processing”.

Last update: 2019/09/13 13:28 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1568374104

https://wiki.docuteam.ch/ Printed on 2025/07/14 00:13

deposition responses

Responses are given in JSON or a binary format. Each JSON response is a list of depositions metadata
matching the query. Generic structure:

{ "api" :
 { "name": "docuteam bridge",
 "version": 1.0.0 },
 "response" :
 [
 { "id": 1234,
 "uploaded_at": "2018-11-03T11:13:39.278026Z",
 "queued_at": "2018-11-03T14:16:12.678056Z",
 "processed_by_feeder_at": "2018-11-03T14:16:12.678016Z",
 "archived_at": "2018-11-03T14:16:12.678016Z",
 "deleted_at": null,
 "status": "archived",
 "feeder_response": { json-blackbox },
 "organization": "museumplus",
 "repository_key": "museumplus",
 "package_format" : "DocuteamDublinCore1.0",
 "package_attached" : true,
 "package_byte_size": 2716786
 }
]
 "request" :
 { "organization": "museumplus",
 "role": "reader",
 "requested_at": "2018-11-03T11:13:39.278026Z"}
}

Key elements include:

“id” is the deposition identificater, in other words bridge internal reference to depositions. It is
notably required to access a specific deposition,
“status” is the deposition status, as described above,

2025/07/14 00:13 5/9

docuteam wiki - https://wiki.docuteam.ch/

“feeder_response” is also formatted in JSON. It is a black box from bridge's perspective. Upon
deposition success, feeder will return a structure of the form:

{ "pids":
 [
 { "clientId":"c1", "pid":"CH-1234565-7:1"},
 { "clientId":"c2", "pid":"CH-1234565-7:2"},
 ...
],
 "feeder_version": "5.4.0"
}

It must be noted that:

the „clientId“ corresponds to the mandatory id's submitted by the client application for each
object within the SIP (for example in the case of Docuteam DublinCore SIP it is located in dc.xml
files and using the following syntax <dc:identifier>clientId:d4FTw3v6T</dc:identifier>).
the „pid“ is the persistent identifier allocated by the repository. It is of the form namespace:id
where namespace is generally the institutional ISIL code (for example: CH-1234565-7:2)

deposition routes

deposition routes overview

GET /depositions depositions#index
POST /depositions depositions#create
GET /depositions/:id depositions#show
PATCH /depositions/:id depositions#update
PUT /depositions/:id depositions#update

deposition routes detailed

Action Description Examples
create HTTP POST on

depositions curl -X POST -F "package=@sip.zip" "https://bridge-stage.docuteam.ch/depositions?token=123456789012345&package_format=DocuteamDublincore1.0"

parameter: constrain: binary data is mandatory

list /
show

HTTP GET on
/depositions,
parameters:
- id (optional,
deposition id),
-status (optional),
-from (optional,
format:YYYY-MM-DD),
-until (optional,
format:YYYY-MM-DD),
-organization
(optional)

curl "https://bridge-stage.docuteam.ch/depositions?token=123456789012345"
curl "https://bridge-stage.docuteam.ch/depositions?token=123456789012345&id=2"
curl "https://bridge-stage.docuteam.ch/depositions?token=123456789012345&status=submitted"
curl "https://bridge-stage.docuteam.ch/depositions?token=123456789012345&status=submitted&organization=customerx"
curl "https://bridge-stage.docuteam.ch/depositions?token=123456789012345&from=2018-11-01&until=2018-11-30"
curl "https://bridge-stage.docuteam.ch/depositions?token=123456789012345&status=error&from=2018-11-01"

retrieve
binary
data

HTTP GET on
/depositions/:id
returns SIP

curl "https://bridge-stage.docuteam.ch/depositions/1?token=123456789012345" --output sip.zip

update

HTTP PUT on
/depositions/:id
parameters:
- id (deposition_id)
- status (values:
deleted, processing,
…)
- feeder_response
(url encoded string)

curl -X PUT "https://bridge-stage.docuteam.ch/depositions/12345?token=123456789012345&status=deleted"
curl -X PUT
"https://bridge-stage.docuteam.ch/depositions/23?token=12super34token56&status=archived&feeder_response=%7B%22pids%22%3A%5B%221%22%2C%222%22%5D%7D"

2 - access API

This API is a of proxy to docuteam rservices. Rservices is offers high level access to Fedora objects.

https://www.nb.admin.ch/snl/en/home/information-professionals/isil.html

Last update: 2019/09/13 13:28 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1568374104

https://wiki.docuteam.ch/ Printed on 2025/07/14 00:13

For example, it is able to generate DIP starting from the top level object of an archival package and
assembling it recursively. Another notable feature is the the on-the-fly generation of thumbnails and,
more generally, format migrations.

Bridge adds an authentication and authorization layer on top of rservices.

This API retrieves data from the archive, hence expects PIDs (and not bridge internal IDs, as it is the
case for the depositions API).

In version 1.0.x, bridge is limited to synchronous requests, meaning that the required object is
prepared and returned at once. In other words, it is not yet possible to ask for the generation of a DIP
and to come back later to download it.

access routes overview

GET /access/sync_preview/:pid sync_preview#download
GET /access/sync_original/:pid sync_original#download
GET /access/sync_dip/:pid sync_dip#download
GET /access/sync_metadata/:pid sync_metadata#download

access routes detailed

Action Description Examples

dip

HTTP GET on
/access/sync_dip/:pid will
generate a MatterhornMets
DIP, parameters:
- recursively=(true or false,
default is false),
- verifyChecksum=(true or
false, default is false)

curl "https://bridge-stage.docuteam.ch/access/sync_dip/CH-123456-7:38?token=123456789012345" --output
dip.zip
curl
"https://bridge-stage.docuteam.ch/access/sync_dip/CH-123456-7:38?token=123456789012345&recursively=true
--output dip.zip

original
HTTP GET on
/access/sync_original/:pid,
sends back the original file
from the archive

curl "https://bridge-stage.docuteam.ch/access/sync_original/CH-123456-7:38?token=123456789012345" --
output file.pdf

preview /
file
migration

HTTP GET on
/access/sync_preview/:pid,
compute on-the-fly and
returns a file migration of
archived file according to
rservices migration settings

curl "https://bridge-stage.docuteam.ch/access/sync_original/CH-123456-7:38?token=123456789012345" --
output file.pdf

metadata
HTTP GET on
/access/sync_metadata/:pid,
returns the EAD metadata
of object

curl "https://bridge-stage.docuteam.ch/access/sync_original/CH-123456-7:38?token=123456789012345" --
output ead.xml

3 - changes API

Changes are similar to depositions, however they target only on specific existing object in the
repository in order to replace or purge it. The targeting is done via the object's PID.

changes statuses

submitted: a new change corresponding to an update or purge was created in bridge
queued: the change has been attributed to a queue in feeder
processing: the change has been downloaded by feeder, which is processing it * archived: the
change was successfully processed, meaning the object in the repository was updated
(depending on the repository setting this may create a new version of the object or replace it)

2025/07/14 00:13 7/9

docuteam wiki - https://wiki.docuteam.ch/

purged: the object was successfully purged from the repository
error: something went wrong, see the “message” field itself located in „feeder_response“ within
the JSON
deleted: the change was deleted from bridge

changes responses

The changes JSON responses are similar to the deposition responses, but have two additional fields:

“pid” that relates to the repository targeted id in the archive
“task” that describes the action performed (update, purge)

Practically, changes responses look like this:

{ "api":
 { "name": "docuteam bridge",
 "version": 1.0.0 },
"response":
 [
 { "id": 4321,
 "uploaded_at": "2018-11-03T11:13:39.278026Z",
 "queued_at": "2018-11-03T14:16:12.678560Z",
 "processed_by_feeder_at": "2018-11-03T14:16:12.678016Z",
 "archived_at": "2018-11-03T14:16:12.678016Z",
 "purged_at": null,
 "deleted_at": null,
 "status": "archived",
 "feeder_response": { json-blackbox },
 "organization": "myorganisation",
 "repository_key": "myrepository",
 "package_format" : "DocuteamDublinCore1.0",
 "package_attached" : true,
 "package_byte_size": 2716786,
 "task" : "node_update",
 "pid" : "CH-654321-0:87654"
 }

Last update: 2019/09/13 13:28 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1568374104

https://wiki.docuteam.ch/ Printed on 2025/07/14 00:13

]
"request":
 { "organization": "myorganiztion",
 "role": "manage",
 "requested_at": "2018-11-03T11:13:39.278026Z"}
}

changes routes

changes routes overview

POST /changes/:id changes#update
GET /changes changes#index
GET /changes/:id changes#show
PUT /changes/:id depositions#update

changes routes detailed

Action Description Examples

create

HTTP POST on
/changes/:id,
parameters:
- pid (repository
persistent identifier)
- package_fromat
(default:
MatterhornMets)
- task (data_update,
metadata_update,
object_update or
data_delete,
object_delete)

curl -X POST -F "package=@sip.zip" "https://bridge-stage.docuteam.ch/changes
?token=123456789012345&pid=CH-654321-0:3&task=object_update&package_format=DocuteamDublincore1.0"
curl -X POST
"https://bridge-stage.docuteam.ch/changes/CH-654321-0:3?token=123456789012345&task=object_delete"

list /
show

HTTP GET on
/changes,
parameters:
- id (optional, change
id),
-status (optional),
-from (optional,
format:YYYY-MM-DD),
-until (optional,
format:YYYY-MM-DD),
-organization
(optional)

curl "https://bridge-stage.docuteam.ch/changes?token=123456789012345"
curl "https://bridge-stage.docuteam.ch/changes
 ?token=123456789012345&id=2"
curl "https://bridge-stage.docuteam.ch/changes?token=123456789012345&status=submitted"
curl "https://bridge-stage.docuteam.ch/changes
 ?token=123456789012345&status=submitted&organization=customerx"
curl
"https://bridge-stage.docuteam.ch/changes?token=123456789012345&from=2018-11-01&until=2018-11-30"
curl "https://bridge-stage.docuteam.ch/changes?token=123456789012345&status=error&from=2018-11-01"

retrieve
binary
data

HTTP GET on
/changess/:id returns
SIP

curl "https://bridge-stage.docuteam.ch/changes/1
 ?token=123456789012345" --output sip.zip

update

HTTP PUT on
/changes/:id
parameters:
- id (change_id)
- status (values:
deleted, processing,
…)
- task (data_update,
metadata_update,
object_update or
data_delete,
object_delete)
- feeder_response
(url encoded string)

curl -X PUT "https://bridge-stage.docuteam.ch/changes/12345
 ?token=123456789012345&status=deleted"
curl -X PUT "https://bridge-stage.docuteam.ch/changes/23
?token=12super34token56&status=archived&feeder_response=%7B%22pids%22%3A%5B%221%22%2C%222%22%5D%7D"

2025/07/14 00:13 9/9

docuteam wiki - https://wiki.docuteam.ch/

From:
https://wiki.docuteam.ch/ - docuteam wiki

Permanent link:
https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1568374104

Last update: 2019/09/13 13:28

https://wiki.docuteam.ch/
https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1568374104

	docuteam bridge
	documentation for client applications
	goal
	key points
	bridge APIs
	0 - authentication and roles
	roles
	recommendation

	1 - depositions API
	deposition statuses
	deposition responses
	deposition routes
	deposition routes overview
	deposition routes detailed

	2 - access API
	access routes overview
	access routes detailed

	3 - changes API
	changes statuses
	changes responses
	changes routes
	changes routes overview
	changes routes detailed

