
2025/05/10 01:28 1/14

docuteam wiki - https://wiki.docuteam.ch/

docuteam bridge

Documentation for docuteam bridge v1.0.0

Goal

Client applications should be able to submit a deposition (a package with data and metadata) to our
ingest platform. Depositions are then picked up by docuteam feeder workflows, usually processing
and storing the deposition in a preservation repository. After a successful ingest, feeder (and
subsequently bridge) return persistent identifiers (PIDs) for every object (file, folder) within the
deposition. Using these PIDs, clients are able to access the deposited objects again.

In the Open Archival Information System (OAIS) terminology:

docuteam bridge receives Submission Information Packages (SIP) on its depositions API.
The SIPs are processed by docuteam feeder (quality assurance, optional initial preservation
actions) and stored into a repository as Archival Information Packages (AIP).
Client applications retrieve Dissemination Information Packages (DIP) of their originally
submitted objects using the access API of docuteam bridge.

Overview

bridge is a set of REST APIs that usually return a JSON (and binary data) response.
bridge is agnostic to the package format of the deposition, e.g.:

Use the simple, BagIt-based format docuteam dublin core (see SIP docuteam dublin core)
Use Matterhorn METS (see its specification or the registered METS profile)
Use other formats like eCH-0160 or SEDA.

bridge consists of three APIs:
depositions: deposition of new packages

New depositions are temporarily stored by bridge. They are made available to
feeder, which in turn processes and stores them into the repository.

https://en.wikipedia.org/wiki/Open_Archival_Information_System
https://wiki.docuteam.ch/doku.php?id=docuteam:feeder
https://wiki.docuteam.ch/doku.php?id=docuteam:sip_dc_public_documentation
https://wiki.docuteam.ch/doku.php?id=media_oais:spezifikation_matterhorn-mets_20160830_wi.pdf
http://www.loc.gov/standards/mets/profiles/00000041.xml
https://www.ech.ch/de/standards/39187
https://redirect.francearchives.fr/seda/

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

Depositions are identified by bridge IDs. These identifiers are returned with the
HTTP response of a new deposition request.
Upon successful archiving in the repository,

the status of the deposition is set to „archived“,
persistent identifiers (PIDs) for each of the deposition's objects are returned
by bridge,
and the SIP is deleted from the depositions as it is now preserved in the
repository.

access: read/access data successfully deposited into the repository
Gives access to the full DIP corresponding to a deposited SIP.
Gives access to metadata, data or previews of specific repository objects.

changes: update or purge specific repository objects
metadata only (data remains unchanged)
data only (metadata remains unchanged)
object (metadata and data are modified)

Authentication

Access is restricted via tokens that must be transmitted with each request using the „token“
parameter. This is required for all HTTP methods, i.e. GET, POST, PUT, DELETE. Bridge relies solely on
tokens for authentication an authorization. Tokens are bound to organizations and roles and restrict
the API.

An authentication token must be at least 15 characters long.
Tokens are passed using a „token“ HTTP request parameter, i.e.
https://server:port/api/method?token=123456789012345

Roles

Roles are associated to tokens and limit their scope of operation.

There are five roles:

The following three roles are limited to a single organization:
read: is restricted to the access API
create: has the same authorizations as read, but can in addition list, create and delete
depositions via the deposition API
manage: has the same authorizations as create, and can in addition update or purge
repository objects via the change API

The following two roles have a global scope:
admin: authentication and authorization management, i.e. token administration using the
API or the GUI
feeder: super user, can do anything except token administration, including status
updates for depositions of any organization.

2025/05/10 01:28 3/14

docuteam wiki - https://wiki.docuteam.ch/

Depositions API

Status Model

Depositions have one of the following status:

submitted: the deposition was received by bridge
queued: the deposition has been queued for processing by feeder
processing: the deposition has been downloaded by feeder, which is processing it (validation,
quality assurance, preservation actions and storage into the repository)
archived: the deposition was successfully processed by feeder and archived into the
repository. This implies that:

Persistent identifiers (PIDs) allocated to the deposition's objects are available in bridge.
Each digital object in the repository (folder, file) gets its own PID, and relations between
the customer's application IDs (if contained in the original deposition) and PIDs are
explicit in the deposition metadata.
PIDs are required to access (read, modify, purge) repository objects through the access
API.
The originally deposited package has been deleted from bridge.

error: something went wrong during the deposition's processing by feeder. In this case, the
„message“ fields of the deposition will contain error information.
deleted: the deposition was deleted from bridge.
This only means that the deposition was removed from bridge, not from the repository.

The deposition status can only be managed directly by the role „feeder“. Other non-reader may only
set the status implicitly by creating or deleting depositions. Deleting depositions (set the status to
deleted) is blocked when status is either „queued“ or „processing“.

Routes

POST /depositions depositions#create
GET /depositions depositions#index
GET /depositions/:id depositions#show

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

PUT /depositions/:id depositions#update

Create

Creates a new deposition.

Allowed calls

POST /depositions

Requirements

Token with role create, manage, or feeder.

Parameters

token
package_format ⇒ indicate the format of the submitted package, e.g. „MatterhornMets“ or
„DocuteamDublincore1.0“ (optional, default: „MatterhornMets“)
[binary data]

Examples

curl -X POST -F "package=@sip.zip"
"https://bridge.docuteam.ch/depositions?token=123456789012345&package_format
=DocuteamDublincore1.0"

Index

Lists/shows the existing depositions with details.

Allowed calls

GET /depositions

Requirements

Token with role create, manage, or feeder.

2025/05/10 01:28 5/14

docuteam wiki - https://wiki.docuteam.ch/

Parameters

token
id (optional)
status (optional)
from (optional, format:YYYY-MM-DD)
until (optional, format:YYYY-MM-DD)
organization (optional)

Examples

curl "https://bridge.docuteam.ch/depositions?token=123456789012345"
curl "https://bridge.docuteam.ch/depositions?token=123456789012345&id=2"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&status=submitt
ed"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&status=submitt
ed&organization=XY"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&from=2018-11-0
1&until=2018-11-30"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&status=error&f
rom=2018-11-01"

Show

Retrieve the binary content of a deposition.

Allowed calls

GET /depositions/:id

Requirements

Token with role create, manage, or feeder.

Parameters

token (mandatory)

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

Examples

curl "https://bridge.docuteam.ch/depositions/1?token=123456789012345" --
output sip.zip

Update

Set status and processing details. By setting the status to deleted, the depositions binary content
will be removed.

Allowed calls

PUT /depositions/:id

Requirements

Token with role create, manage (limited to delete a deposition), or feeder.

Parameters

:id deposition ID
token
status ⇒ supported values are deleted | queued | processing | archived |
error
feeder_response (optional, url encoded string)

Examples

curl -X PUT
"https://bridge.docuteam.ch/depositions/12345?token=123456789012345&status=d
eleted"
curl -X PUT
"https://bridge.docuteam.ch/depositions/23?token=12super34token56&status=arc
hived&feeder_response=%7B%22pids%22%3A%5B%221%22%2C%222%22%5D%7D"

Responses

Responses are given in JSON or (for the show method) as a binary. Each JSON response is a list of
deposition with their details. The generic structure looks like this:

{ "api" :
 { "name": "docuteam bridge",

2025/05/10 01:28 7/14

docuteam wiki - https://wiki.docuteam.ch/

 "version": "v1.0.0" },
 "response" :
 [
 { "id": 1234,
 "uploaded_at": "2018-11-03T11:13:39.278026Z",
 "queued_at": "2018-11-03T14:16:12.678056Z",
 "processed_by_feeder_at": "2018-11-03T14:16:12.678016Z",
 "archived_at": "2018-11-03T14:16:12.678016Z",
 "deleted_at": null,
 "status": "archived",
 "feeder_response": { json-blackbox },
 "organization": "museumplus",
 "repository_key": "museumplus",
 "package_format" : "DocuteamDublinCore1.0",
 "package_attached" : true,
 "package_byte_size": 2716786
 }
]
 "request" :
 { "organization": "museumplus",
 "role": "reader",
 "requested_at": "2018-11-03T11:13:39.278026Z"}
}

Key elements include:

id is the deposition identifier, i.e. the bridge internal reference for depositions. It is used to
access a specific deposition
status is the deposition's status, as described above.
feeder_response contains feedback from the processing of the deposition in feeder. The
content of this field is also formatted in JSON. It is a black box from bridge's perspective. Upon
deposition success, feeder will return a structure of the form:

{ "pids":
 [
 { "clientId":"c1", "pid":"CH-1234565-7:1"},
 { "clientId":"c2", "pid":"CH-1234565-7:2"},
 ...
],
 "feeder_version": "5.4.0"
}

It must be noted that:

the clientId corresponds to the mandatory ids submitted by the client application for each
object within the SIP (for example in the case of Docuteam DublinCore SIP it is located in dc.xml
files and using the following syntax <dc:identifier>clientId:d4FTw3v6T</dc:identifier>).
the pid is the persistent identifier allocated by the repository. It is of the form
„{namespace}:{id}“, where „namespace“ is generally the institutional or ISIL code (for
example: CH-1234565-7:2), and „id“ the unique number for that namespace in the repository.

https://www.nb.admin.ch/snl/en/home/information-professionals/isil.html

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

Access API

This API is a proxy to docuteam rservices. rservices offers high-level access functionality to repository
objects. For example, it is able to generate DIPs starting from any level of an archival package and
assemble it recursively. Another notable feature is the on-the-fly generation of preview/thumbnail
and, more generally, format migrations.

This access methods retrieve data from the repository, hence expects PIDs (and not bridge internal
IDs, as it is the case for the depositions API).

In version 1.0, bridge is limited to synchronous requests, meaning that the required object is prepared
and returned at once. Async/callback requests are not yet possible.

Routes

GET /access/sync_metadata/:pid sync_metadata#download
GET /access/sync_dip/:pid sync_dip#download
GET /access/sync_original/:pid sync_original#download
GET /access/sync_preview/:pid sync_preview#download

Metadata

Get the EAD metadata of a repository object.

Allowed calls

GET /access/sync_metadata/:pid

Requirements

Token with role read, create, manage, or admin.

Parameters

:pid persistent identifier of a repository object
token

Examples

curl
"https://bridge.docuteam.ch/access/sync_metadata/CH-123456-7:38?token=123456
789012345" --output ead.xml

2025/05/10 01:28 9/14

docuteam wiki - https://wiki.docuteam.ch/

Preview

Get a preview representation of a repository object.

Allowed calls

GET /access/sync_preview/:pid

Requirements

Token with role read, create, manage, or admin.

Parameters

:pid persistent identifier of a repository object
token

Examples

curl
"https://bridge.docuteam.ch/access/sync_preview/CH-123456-7:38?token=1234567
89012345" --output file.pdf

Original

Get the original format of a repository object.

Allowed calls

GET /access/sync_original/:pid

Requirements

Token with role read, create, manage, or admin.

Parameters

:pid persistent identifier of a repository object
token

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

Examples

curl
"https://bridge.docuteam.ch/access/sync_original/CH-123456-7:38?token=123456
789012345" --output file.pdf

DIP

Get the dissemination package of a repository object, structured according to the Matterhorn METS
format. For nested objects, it is possible to receive a package with both binaries and (technical and
descriptive) metadata recursively.

Allowed calls

GET /access/sync_dip/:pid

Requirements

Token with role read, create, manage, or admin.

Parameters

:pid persistent identifier of a repository object
token

Examples

curl
"https://bridge.docuteam.ch/access/sync_dip/CH-123456-7:38?token=12345678901
2345" --output dip.zip
curl
"https://bridge.docuteam.ch/access/sync_dip/CH-123456-7:38?token=12345678901
2345&recursively=true --output dip.zip

Changes API

Changes target specific objects in the repository, using their persistent identifier (PID), in order to
replace or purge them. Similar to depositions, they need to be queued and processed by docuteam
feeder to get their effect into the repository.

2025/05/10 01:28 11/14

docuteam wiki - https://wiki.docuteam.ch/

Status Model

submitted: a new change corresponding to an update or purge was created in bridge
queued: the change has been queued for processing in feeder
processing: the change has been downloaded and is being processed by feeder
archived: the change was successfully processed, i.e. the object in the repository was updated
(depending on the repository setting this may create a new version of the object or replace it)
purged: the change was successfully processed, i.e. the object was purged from the repository
error: something went wrong, see the message in the „feeder_response“ field of the change
deleted: the change was deleted from bridge

Routes

GET /changes changes#index
POST /changes/:pid changes#create
GET /changes/:pid changes#show
PUT /changes/:pid changes#update

Create

Creates a new change.

Allowed calls

POST /changes

Requirements

Token with role manage or admin.

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

Parameters

:pid persistent identifier of a repository object
token
task ⇒ type of change, e.g. „data_update“, „metadata_update“, „object_update“,
„data_delete“, or „object_delete“
package_format ⇒ indicate the format of the submitted package, e.g. „MatterhornMets“ or
„DocuteamDublincore1.0“ (optional, default: „MatterhornMets“)
[binary data] ⇒ required if task is „*_update“

Examples

curl -X POST -F "package=@sip.zip"
"https://bridge-stage.docuteam.ch/changes?token=123456789012345&pid=CH-65432
1-0:3&task=object_update&package_format=DocuteamDublincore1.0"
curl -X POST
"https://bridge-stage.docuteam.ch/changes/CH-654321-0:3?token=12345678901234
5&task=object_delete"

Index

Lists/shows the existing depositions with details.

Allowed calls

GET /depositions

Requirements

Token with role create, manage, or feeder.

Parameters

token
id (optional)
status (optional)
from (optional, format:YYYY-MM-DD)
until (optional, format:YYYY-MM-DD)
organization (optional)

Examples

curl "https://bridge.docuteam.ch/depositions?token=123456789012345"

2025/05/10 01:28 13/14

docuteam wiki - https://wiki.docuteam.ch/

curl "https://bridge.docuteam.ch/depositions?token=123456789012345&id=2"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&status=submitt
ed"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&status=submitt
ed&organization=XY"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&from=2018-11-0
1&until=2018-11-30"
curl
"https://bridge.docuteam.ch/depositions?token=123456789012345&status=error&f
rom=2018-11-01"

changes routes detailed

Action Description Examples

create

HTTP POST on
/changes/:id,
parameters:
- pid (repository
persistent identifier)
- package_fromat
(default:
MatterhornMets)
- task (data_update,
metadata_update,
object_update or
data_delete,
object_delete)

list /
show

HTTP GET on
/changes,
parameters:
- id (optional, change
id),
-status (optional),
-from (optional,
format:YYYY-MM-DD),
-until (optional,
format:YYYY-MM-DD),
-organization
(optional)

curl "https://bridge-stage.docuteam.ch/changes?token=123456789012345"
curl "https://bridge-stage.docuteam.ch/changes
 ?token=123456789012345&id=2"
curl "https://bridge-stage.docuteam.ch/changes?token=123456789012345&status=submitted"
curl "https://bridge-stage.docuteam.ch/changes
 ?token=123456789012345&status=submitted&organization=customerx"
curl
"https://bridge-stage.docuteam.ch/changes?token=123456789012345&from=2018-11-01&until=2018-11-30"
curl "https://bridge-stage.docuteam.ch/changes?token=123456789012345&status=error&from=2018-11-01"

retrieve
binary
data

HTTP GET on
/changess/:id returns
SIP

curl "https://bridge-stage.docuteam.ch/changes/1
 ?token=123456789012345" --output sip.zip

update

HTTP PUT on
/changes/:id
parameters:
- id (change_id)
- status (values:
deleted, processing,
…)
- task (data_update,
metadata_update,
object_update or
data_delete,
object_delete)
- feeder_response
(url encoded string)

curl -X PUT "https://bridge-stage.docuteam.ch/changes/12345
 ?token=123456789012345&status=deleted"
curl -X PUT "https://bridge-stage.docuteam.ch/changes/23
?token=12super34token56&status=archived&feeder_response=%7B%22pids%22%3A%5B%221%22%2C%222%22%5D%7D"

changes responses

The changes JSON responses are similar to the deposition responses, but have two additional fields:

pid relates to the target repository object of the update
task describes the action to be performed (update, purge)

Practically, change responses look like this:

Last update: 2020/01/27 15:46 docuteam:bridge https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

https://wiki.docuteam.ch/ Printed on 2025/05/10 01:28

{ "api":
 { "name": "docuteam bridge",
 "version": "v1.0.0" },
"response":
 [
 { "id": 4321,
 "uploaded_at": "2018-11-03T11:13:39.278026Z",
 "queued_at": "2018-11-03T14:16:12.678560Z",
 "processed_by_feeder_at": "2018-11-03T14:16:12.678016Z",
 "archived_at": "2018-11-03T14:16:12.678016Z",
 "purged_at": null,
 "deleted_at": null,
 "status": "archived",
 "feeder_response": { json-blackbox },
 "organization": "myorganisation",
 "repository_key": "myrepository",
 "package_format" : "DocuteamDublinCore1.0",
 "package_attached" : true,
 "package_byte_size": 2716786,
 "task" : "node_update",
 "pid" : "CH-654321-0:87654"
 }
]
"request":
 { "organization": "myorganiztion",
 "role": "manage",
 "requested_at": "2018-11-03T11:13:39.278026Z"}
}

From:
https://wiki.docuteam.ch/ - docuteam wiki

Permanent link:
https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

Last update: 2020/01/27 15:46

https://wiki.docuteam.ch/
https://wiki.docuteam.ch/doku.php?id=docuteam:bridge&rev=1580136361

	docuteam bridge
	Goal
	Overview
	Authentication
	Roles
	Depositions API
	Status Model
	Routes
	Create
	Allowed calls
	Requirements
	Parameters
	Examples

	Index
	Allowed calls
	Requirements
	Parameters
	Examples

	Show
	Allowed calls
	Requirements
	Parameters
	Examples

	Update
	Allowed calls
	Requirements
	Parameters
	Examples

	Responses

	Access API
	Routes
	Metadata
	Allowed calls
	Requirements
	Parameters
	Examples

	Preview
	Allowed calls
	Requirements
	Parameters
	Examples

	Original
	Allowed calls
	Requirements
	Parameters
	Examples

	DIP
	Allowed calls
	Requirements
	Parameters
	Examples

	Changes API
	Status Model
	Routes
	Create
	Allowed calls
	Requirements
	Parameters
	Examples

	Index
	Allowed calls
	Requirements
	Parameters
	Examples
	changes routes detailed

	changes responses

